1 Discussion of HESSI Symbols There are a great number of algebraic quantities involved in imaging spectroscopy with the HESSI instrument, so it is worthwhile adopting some conventions on what symbols we will use. This is a first stab at choosing a set of unique symbols for HESSI imaging. Later we should add more symbols relevant to spectroscopy. | Symbol | Meaning | IDL var | |------------|--|---------------------------| | t | Time (usually in binary μ s) | time | | N | Number of counts per time bin | n_bin | | x^A, y^A | Yaw, pitch sun-center offset in spacecraft coordinates (μ radians) | x_sc,y_sc | | X_m, Y_m | Pixel m offset from map center in inertial coordinates | X_{sun}, Y_{sun} | | α | Roll angle (μ radians), measured CCW from X axis | alpha | | β | Grid orientation in spacecraft coordinates (μ radians) | ${ m beta}$ | | X^M, Y^M | Map center offset from Sun center in inertial coordinates | xm_sun,ym_sun | | x^M, y^M | Map center offset in spacecraft coordinates | ${ m xm_sc,ym_sc}$ | | | $x^{M}=x^{A}+X^{M}coslpha+Y^{M}sinlpha$ | | | | $y^M = y^A + Y^M cos \alpha - X^M sin \alpha$ | | | x_m, y_m | Location of mth map pixel in spacecraft coordinates | x_sc, y_sc | | au | Live time (binary fraction) | tau | | T | Grid-response-matrix transmission (Step 5) | $\operatorname{gridtran}$ | | A | Grid-response-matrix amplitude (Step 5) | modamp | | Q | Peak grid-response-matrix offset (Step 5) | ${ m peak_grm_offset}$ | | p | Sub collimator pitch (FltPt microradians) | ang _pitch | | Θ | Phase of map center relative to phase reference line (Step 6) | $phase_map_ctr$ | | | $\Theta = 2\pi (x^M \cos \beta + y^M \sin \beta \pm Q)/p$ | | | Θ | Phase of sun center relative to phase reference line | | | | $\Theta_A = 2\pi (x^A cos eta + y^A sin eta \pm Q)/p$ | | | L_{mi} | Projected offset of pixel x_m, y_m | ${ m offset_proj}$ | | | $L_{mi} = x_m \cos \beta + y_m \sin \beta \pm Q$ | | | | $=\Theta_A+X^Mcos(\alpha+eta)+Y^Msin(\alpha+eta)$ | | | E_{mi} | Expected counts in time bin i from pixel m: | | | | $E_{mi} = F_m \tau_i T_i \{1 + \sum_h A_{ih} cos[h(2\pi L_{mi}/p \pm Q_{ih})]\}$ | $counts_exp$ | | F | Postulated flux | flux | | h | Harmonic $(1,2,3,)$ | h | | u,v | Coordinates in Fourier plane (visibility coverage) | \mathbf{u}, \mathbf{v} | | i | Time bin index | i | | m | Map pixel index | m | ## Guidelines: - 1. Use Greek for angles and phases, with upper case reserved for "large" (i.e. $> 1^{\circ}$) angles. - 2. Capital X,Y for inertial coordinates, l.c. x,y for spacecraft coordinates. - 3. Superscripts for labels, subscripts for vector or matrix indices. - 4. "Phase" is reserved for arguments of periodic functions, and to which arbitrary multiples of 2π can be added.